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The H,,/ polynomials are extensions of the generalized Hermite-Fcjér inter-
polating polynomials, H, f; in that they incorporate boundary conditions. For such
polynomials, one can define ( p, ¢)-p-normal sets which correspond to the p-normal
sets for H, f. It is shown that the sequence {H,,, f} based on a (p, g)-p-normal set

converges uniformly to f for all continuous f.  © 1990 Academic Press, Inc.

1. INTRODUCTION

The Hermite-Fejér (HF) polynomials H, f were introduced by Fejér in
1916 [1] as a means to prove the Weirstrass approximation theorem con-
structively using interpolating polynomials rather than the approximating
Bernstein polynomials. They are defined in terms of a triangular set of

points

Ti={xiik=1,.,mn=12, ;x,<x, il j<k}
98

0021-9045/90 $3.00

Copyright € 1990 by Acadcmic Press, Inc.
All rights of reproduction in any form reserved.



HERMITE FEJER INTERPOLATION 99

contained in /:=[ —1, 1] as follows

an(x) = z .fknhkn(x) (./knzzj‘(xkn))s

where
i) 1= 00 () 2, )
i () 1= 0, V(X = %) 0] (x2,)
o,00) = [T (x=x,)
and
i (¥) 1= T = 07 (60 ) (5 = 0, ) (1)
so that

M (X3) =04, i (x,,) =0, jik=1,.., n
It follows that the HF polynomials H, f satisfy the conditions
H, f(Xin) = fins H, f(x,)=0, k=1, .,n
Fejér [1] showed that if

2k — 1
2n

x,,_k_*,]’,,:COS

then, for all fe C(J),
If—H,fll;=0(1) as n-x,
where, for any interval J,

Igl, = max [ g(x)l.

Since Fejér’s original paper, the HF and related polynomials have been
studied quite extensively as is shown by a recent bibliography [4] with
over 350 titles. The generalizations and extensions of H, f have been in
various directions. In one direction they have culminated in the H,,, poly-
nomials which are based on a triangular set of points T<(—1, 1) and
include boundary conditions at the endpoints of /. They are defined for
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nonnegative integers p and ¢ in terms of the vectors d,, e,, and m, of
lengths n, p, and g respectively, as

anq(./; drn €, mn;x)

= i flcnhknpq(x)+ Z dkni;knpq(x)

k=1 k=1
p-1 qg—1
+ Z C’Hl‘nlwpq(x)'*' Z m,, l.nilnpq(x)7 (])
5=0 =0
where
hknpq ('x) = Uknpq(x) Aknpq (X) (2)
(1=x V[ 14x\,
Aknpq(x) '—(l_xk”> <]+xk"> Ikn(x) (3)
. . p _ q —(D,I;(xk") _
bknpq(x) =1 + I:l - Xpn 1 +xk,, (D:,(X"):I (X xkn) (4)
};knpq(x) = (X - 'xkn) Aknpq (x) (5)
1—x)° (0,(x)\? (1+x)’
o 12
_ 1 +x) 21— x\’
e () = P o) 2 (22 ) (228 ™
p 1-s
(___1)5 l/.ynpq(x) = Z aanq(l _x)ﬂ (8)
a=0
g-—1 -t
(_I)IVInpq(x) = Z drnp(l +X)1. (9)

It has been shown by Knoop [6] that the coefficients a,,, and a,,, in (8)
and (9), which are chosen so that

Xi':.:)pq(l)zais’ Ogl,é‘gp—l

D (=1)=6,  0<j1<qg—1,

are independent of both p and s or ¢ and ¢, respectively. When p >0,
e, =f(1) and when ¢>0, m,,=f(—1). Otherwise, the components of
d,,e,, and m, are arbitrary and may vary with n.

For certain spccial cases of d,,, e,, and m,, we shall use the following
notations: If d,,, = f'(x,,), we shall write f’ instead of d,,. If e_, = f©~1(1),
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s=1, .., p, we shall write /) instead of e, while if ¢, does not depend on
n, we shall write e instead of e,, and similarly for m,,.
The H,,, polynomials have the interpolating properties

anq(xkn) =.fkn9 Hrlqu(xkrz) = dkn’ k= l’ v 11
HY ()=e,,1,,5=0,.,p—1, H? (-Uy=m,,,,,1=0,.,q-1

npq npq

so that if fe Py, _,, ,,,, where #, is the sct of all polynomials of degree
<m, then H,,,(f, f', f*), f*7) = /. In particular, if we set /=1, we get the
important identity

Z Pinpg (X) F Xonpg (X) + Zonpg (X) = 1. (10)
k=1
Special cases of the H,,, polynomials have been studied by many
authors. Thus, the cases p, ge {0, 2} are the generalized HF polynomials
while the case p =g =1 leads to the quasi-HF polynomial [8]. The general
case was studied by Knoop [6] and Vértesi [11] when the points x,
are the zeros of the Jacobi polynomial P{*#. Thcy showed that if
xelp—1, p)and fe[g—1,g), then

“anq(f;dn’en’mn)_.f!llzo(]) as n—x for‘/‘ec‘ (Il)

whenever

q | = {otlogn) il p-l<a<p-12g-1<f<q-12
17 lo(min(n=2* %, n 2+29))  otherwise = he
ie.m| =()(n2$ 2)3 522, veey p

|mm :0(’12’_2)’ 122, ,q

and that (11) holds if p—15<a<p ¢g—-15<p <gq, and
lx—p—P+¢q| <1 provided that d,, =0, k=1,...,n,¢,=¢, and m,=m. 1t
was also shown in [6] that for any T< (-1, 1), Xonpy = 0, Zonp, =0 in I and
that the coefficients a,,, and a,,, in (8) and (9) depend only on the points
X, and g or p, respectively, but not on p and s or ¢ and . We shall use
the ideas in the proof of these facts in [6] to prove the following lemma:

LEMMA 1. The coefficients a,,, and a.,, in (8) and (9) are all non-

negative.

ong wmp

Proof. As in [6], we have that if ¢=0, yg,, has 2n -1 zeros In
[xi. X,,] and p—1 zeros at x=1 and no others while if >0, y,,, has
additional ¢ — 1 zeros at x= —1, one zero in (—1, x,,), and no others.
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Hence, if g is even, y,,, = 00 as x = —o0 and if ¢ is odd, ¥g,p, = — 0 as
x— —occ. In either case, V,,,,—» o as x— —oc which implies that
a,_ 1 ,,=0. Since a,,, is independent of p and s, we conclude that a,,, >0
for all ¢. Similarly a,,,> 0 for all t.

ang

COROLLARY L. For all xel

l—x)°
o €T o), 5=, (12

(1+x) _

|i1npq(x)|< T X()upq(x)5 l=19"" q_l (13)

Proof. By Lemma 1, for all xe/

' V.\‘npq (X)| < V()npq (.X), | I7mpq (.X)l < I7Onpq (x )

Hence (12) and (13) follow from (6) and (7), respectively.

2. p-NORMAL SETS

In conjunction with his investigation of the convergence of HF inter-
polating polynomials, Fejér introduced the notions of normality and
p-normality for triangular sets T.' The set T is said to be normal if v, >0
in I and p-normal for somec p>0 if v,,>p in I for all k£ and n. Since
Uin(Xi,) =1, it follows that p < 1. The importance of p-normality is that it
ensures that the {H, f} is a scquence of positive operators in /. Fejér and
Griinwald derived various properties of normal and p-normal sets which
can be used to prove convergence results for HF interpolation. The out-
standing cxample of p-normal sets is that given when the points x,, are the
zeros of P*® with —1 <a, B <0 in which case, p=min(—a, — ). If 2=0
or f=0, the set is is only normal. Other p-normal sets are given in [107].

For the H,,, process, the appropriate generalizations of normality and
p-normality will be called ( p, ¢)-normality and ( p, g)-p-normality and will
be defined by the conditions that vy, (x) =0 or vy, (x) = p >0 as the case
may be for all k and n and all xe I. The particular case (1, 1)-p-normality
was called quasi-p-normality and studicd by Szasz [8] and Santa [7]. As
in the p-normal case, the outstanding examples of ( p, ¢)-p-normal sets are
given by the zeros of P*# with p—1<a<p, g—1<B<gq. And as in the

"In | 2], Fejér introduced properties 4 and B which are equivalent to normality and p-nor-
mality, respectively. In [3] he called point scts with property 4 normal and those with
property B, normal in the strong sense. The term p-normality was coined by Griinwald [5].
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normal case, we have that if a triangular set T is ( p, ¢)-normal in 7, then
itis {(p,grpnormalin I, :=[—-1+¢, 1 —¢], O<e< !, with p=¢/2.
Clearly, in the ( p, ¢)-normal case, we have from (10) that

2 hknpq(x)= Z =ihknp(/(x)' <1 in [ (14)
k=1 k=1

and that
XOnpq(x)g la ZOI!pt[(x) < tin L (}5)
These imply that for (p, g)-p-normal scts,

Z Almpq(x)< 1/IP in i {16)

k=1
and using (12) and (13), that
1% snpg ()] < (1 — x)*/s! inl,s=0,..,p—1 (17)
L mpg ()] < (1 4+ x)/1! inl,t=0,..,9—1. (18)

Since we have convergence of the H,,, process for the (p, g)-p-normal
set given by the zeros of P*# with p—1<a<p, g—1<f<gq, we may
hope to have convergence for any (p, g)-p-normal set. This is indeed the
case as is given by the following theorem which is the main result of this

paper:
THEOREM 1. If T is a (p, q)—p-normal set, then
IH,,,(f d,, em)—fi,=0o(l) asn— o foral feC {19)
whenever
|din)l =O(n #*°)  for arbitrarily small §>0, k=1..,n  (20)

If T is only (p, g)-normal, then (19) holds with I replaced by 1,.

Proof. This proof follows that of Vértesi [9] which is based on the
work of Griinwald [5]. We first observe that we can imporve Theorem 3.1
in [11] to read that if

k=1

n

Y (L4 1dh) Vg () =0(1)  as n— oo (22)

k=1
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uniformly in I, then (19) holds. The proof of this depends on the fact that,
given any n>0, we can find a polynomial P, e 2, for sufficiently ldrge m
such that | f—P,l,<n and Pf,j’(l)ze“,, s—O, L p—1 PY(-1)=
m,,y, t=0, .., q—1. For cxample, we can take P,, to be H>F(f,d,, e, m)
based on the zeros of P*# with a=p~—1/2, f=¢g—1/2, and d,y=0,
k=1,..,N for sufficiently large N. Now, for n=22N+p+q¢g—1,
H,, (P, P, em)=P_ . Hence

npg

’anq(f; dn’ €, m; x) _f(-x)'

z |fkn xkn | Ihknpq(x)|

k=1

+ 2 (il + 1Py (Xin)) Vg (X)] + | P () = f(x)] = 0(1)

k=1

as n— o0 uniformly in / if (21) and (22) hold. But (21) follows from (14).
Hence, to prove our theorem, we must show that (22) holds uniformly in
I whenever (20) holds.

Let p,=p—9/2 and p,=p —d and define the function ge C(J) as

g(x) = 0, —1<x<
T lx—a),  a<x<l,

where xe [ — 1, 0]. Using g, we shall verify that

Z ('xkn_fx)mAknpq(a)Scn —pz’ (23)

@ Xgp

where we shall usc ¢ to indicate an arbitrary positive constant independent
of n and x but changing values at each new occurrence. Now, if a =x,, for

an index j or if x= —1, then the sum in (23) vanishes. Hence, we consider
only those values of n for which x,,#a, k=1,..,n, and assume that
a> — 1. For such values of n and %, we can form

H,(x):=H,,(g g, & m;x),

where é,=g'(1), é,=0, s=3,..,p, and m,=0, t=2,.., q. We first show
that

ﬁ"((x)z Z (xkn—'x)m[vknpq(a)_pl]Aknpq(x)

X < Xfp

+x()npq(a)g(l)+Xlnpq(a)g,(])20' (24)
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By (p, g)-p-normality, the sum in (24) is nonnegative. Furthermore, setting
B(%) := (w, (2)/w, (1))2((1 + 2)/2)¢, we have that

Z()npq(z)g( )+/lnpq(a) (1)
= [Voupg ()1 =) + V' (1) py (T =2} (1 = 2)] B(a)

r -1 p 2
=[ Z a""‘l(1 _1)(’— Z plaanq(1 _a)“—l (1 “X)MB(CX)
g=0 =0 -

pr 2

=[7 Z (1 _pl)aom;(l _a)a—*_ap—l.nq(] ’"1),)_) J (1 "(X)PIB"(J(:X)ZO

—a. 0

since p, < | and 4,,, =0 by Lemma 1, proving (24).
We now invoke a lemma similar to that in [5] which we shall prove
later.

LEMMA 2. For the function g(x), there exist polynomials P, € P, for all
m such that, for all xel

|g(x)— P, (x)| <clogm/m*' < cm~** (25}

[{x —a)g'(x)= P, {x)) <clogmim” <cm™ 7, X#£2 (26)
[PO(1) <em (1 —2), i=1..p—1La#l 27)
IPO(=1)<em P(1+2). j=2,..g-1La#-1 (28)

For such polynomials, setting M =2n+ p+ ¢ — !, we have that

|H,(2) = Py (2)]

< Z Ig(xkn)_P.M(xkn)l hlmpq(a)

k—f
n

+ Z igl('xkn)_PTM(xk")l kan CXI Aknpq( )+/()npq( )Ig(])_Pw(l}l

k=1

F K inpg (N 18 (1) = P (1)i + Z 7 onpg () P (1)]

g -
F Xonpg () 1P sl = D+ 1T 1pg (N Po (= D+ 3 Z g () PR

=O0(M ")+ O(M~7)+ O(M~") + O(M ")+ O(M ~#)
+OM™) +OM™7)+O0(M ")=0(M ).
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The first, third, and sixth estimatcs follow from (25) and (14) or (15), the
second, from (26) and (16), the fourth from (26) and (17), the fifth from
(27) and (17), the seventh from (26) and (18) since g'(—1)=0, and the
last from (28) and (18).

Since P, (a)=O(M *?) from (25), we have finally that
0< H, (2) <M. (29)

Since vy, (@) —p, = p—p, =6/2, we obtain (23) from (29). As in [9], we
have that (x,,—a)*' = 2”(x,,—«)/2. Then, using similar arguments for
o€ [0, 1], we obtain (22) proving (19). The proof of the ( p, g)-normal case
is similar.

Proof of Lemma 2. Since g(x) satisfies a Holder condition of order p,,
we can find a polynomial Q,, € %, for every m such that
18(X)—Qn (Xl <em i I (30)
and
09(1)=0,i=1,.,p—1; QV(—1)=0,j=1,.,9—L.  (31)
For cxample, we can take H,,,(g, d,, e, m; x) based on the zeros of P{*#
with a=p—1/2, pf=¢g—1/2 where d,=0, k=1,.,ne,,,=0,

s=1,.,p—1,and m,, =0, t=1,.,9—1. See in [11, 3.43] combined
with Lemma 4.2. If we now define

j 2n()=Qm(®) (32)
I—a
then, as is shown in [5], (25) and (26) hold. Since
P:”(x):Qm(x)_Qm(a) (33)
X —a
and
Pﬁ)(x)z(l—i)Pi,;_l)(x)-FQ(' ”(x), i>2 (34)

X—a

as can be shown by induction, it foliows from the fact that
|Q(2)] = O(m™*") that

I[P (D =1Q,(1)/(1 —a)| + O(m ="y < em™ "/(1 — a)
[P (= DI < (1Qm (= DI+ 1@ (@)])/(1 +2) <em™ /(1 + ).
Hence, by (31) and induction, (27) and (28) foliow from (34).
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3. CONCLUDING REMARKS

The (p. g)-p-normal sets have many of the properties of p-normal sets.
We mention here one which may be useful in product integration as a
theorem (cf. [5]).

THEOREM 2. If T is a (p, q)-p-normal set, then for any ¢ in (0,1} and
any fe C(I),
¢ n
lf(x)— Y SinArnpg(x)| =0 as n—o o
k=1
uniformly for all xel,.

Proof. The proof proceeds exactly as in [5] with w](x,, )/, (x.,)
replaced by A4,,,,(x).
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